5 Jul 2023

Applied Optimal Control(01) - Unconstrained Optimization Basics (Nec/Suf Conditions, Gradient Descent)

Based on the lecture notes by Dr. Marin Kobilarov on “Applied Optimal Control (2021 Fall)” at Johns Hopkins University

Keypoints:

  • Optimality Conditions
    • Necessary conditions
      • $x$ is a local minimum of $f(x)$ if $\nabla f(x) = 0$ and $\nabla^2 f(x*)$ is p.s.d.
      • To tell if $\nabla^2 f(x)$ is p.s.d., check if all the eigenvalues of $\nabla^2 f(x)$ are non-negative.
    • Sufficient conditions
      • $x$ is a local minimum of $f(x)$ if $\nabla f(x) = 0$ and $\nabla^2 f(x*)$ is p.d.
      • To tell if $\nabla^2 f(x)$ is p.d., check if all the eigenvalues of $\nabla^2 f(x)$ are positive.
  • Numerical Solutions: gradient-based methods
    • Gradient descent
      • $x_{k+1} = x_k + \alpha_k d_k$
      • $d_k$ is the descent direction, s.t. $\nabla f(x_k)^T d_k < 0$
        • Steepest descent: $d_k = -\nabla f(x_k)$
        • Newton’s method: $d_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$
        • Regularized Newton’s method: $d_k = -(\nabla^2 f(x_k) + \lambda I)^{-1} \nabla f(x_k)$
      • $\alpha_k$ is the step size, s.t. $f(x_k + \alpha_k d_k) < f(x_k)$
        • minimize $f(x_k + \alpha_k d_k)$ w.r.t. $\alpha_k$
        • Successive Stepsize Reduction (Armijo Rule)
        • Constant Stepsize

CV CV CV CV CV CV CV CV CV CV CV


Tags:
0 comments