28 Aug 2023
Linear System Theory (Part I, Foundations)
INTRODUCTION TO LINEAR SYSTEM THEORY
Keypoints:
This file is based on ME 530.616 Introduction to Linear Systems Theory by Prof. Louis Whitcomb
Linear Dynamical System Representation
Linearization and LTI State Equation Solutions
- Linear approximation of nonlinear dynamical system at an equilibrium point: the second-order Taylor series expansion of the nonlinear function $f$ about the equilibrium point $(x_0,u_0)$.
- $\dot x=f(x,u)$ $f(x,u)=f(x_0,u_0)+\frac{\partial f}{\partial x}\vert_{x=x_0,u=u_0}(x-x_0)+\frac{\partial f}{\partial u}\vert_{x=x_0,u=u_0}(u-u_0)+\mathcal{O}(|x-x_0|^2+|u-u_0|^2)$ $\dot x=A(x-x_0)+B(u-u_0)+\mathcal{O}$, where $A=\frac{\partial f}{\partial x}\vert_{x=x_0,u=u_0}$ and $B=\frac{\partial f}{\partial u}\vert_{x=x_0,u=u_0}$.
- Stability of linearized system: the real parts $\lambda_i$ of the eigenvalues of $A$ determine the stability of the linearized system.
- All negative: asymptotically stable
- Some zero: indeterminate
- $Re(\lambda_i)=0$, and algebraic multiplicity=geometric multiplicity: marginally stable
- Any positive: unstable
- LTI State Equation Solutions:
- Zero-input case: $u(t)=0$
- $\dot x=Ax$ $x(t)=e^{At}x(0)=\sum_{i=0}^{\infty}\frac{A^it^i}{i!}x(0)$
- $e^{At}=\mathcal{L}^{-1}[(sI-A)^{-1}]$
- Nonzero-input case: $u(t)\neq 0$
- $\dot x=Ax+Bu$ $x(t)=e^{At}x(0)+\int_0^te^{A(t-\tau)}Bu(\tau)d\tau$
LTI Response Properties: Transfer Function Poles and Zeros
$u(s) \rightarrow G(s) \rightarrow y(s)$, where $G(s)$ is the transfer function i.e $G(s)=\frac{Y(s)}{U(s)}$.
- Time domain state space representation: $\dot x=Ax+Bu$, $y=Cx+Du$
- Frequency domain transfer function representation:
- $G(s)=C(sI-A)^{-1}B+D$
- $G(s)=\frac{n(s)}{d(s)} + D = \frac{b_ms^m+b_{m-1}s^{m-1}+…+b_1s+b_0}{s^n+a_{n-1}s^{n-1}+…+a_1s+a_0} + D$
- Poles are the roots of the denominator polynomial $d(s)$, and zeros are the roots of the numerator polynomial $n(s)$.
- Poles are the eigenvalues of $A$, but eigenvalues of $A$ are not necessarily poles of $G(s)$ due to pole-zero cancellation. Because $(sI-A)^{-1} = \frac{adj(sI-A)}{det(sI-A)}$, and $det(sI-A)$ is the characteristic polynomial of $A$.
LTI Response Properties: Steady-State Frequency Response
- Steady-State Response: given a LTI system with response $y(t)$ to initial condition $x(t_0)=x_0$ and input $u(t)$, the steady-state response $y_{ss}(t)$ is that function satisfying $\lim_{t\rightarrow\infty}[y(t)-y_{ss}(t)]=0$.
- If $y_{ss}(t)$ is constant, it’s regarded as the final value.
- $y_{ss}(t)$ may not be constant.
- $y_{ss}(t)$ may oscillate.
- $y_{ss}(t)$ may be unbouded.
- Final value theorem: $\lim_{t\rightarrow\infty}y(t)=\lim_{s\rightarrow 0}sY(s)$, if $\lim_{t\rightarrow\infty}y(t)$ exists and is finite.